106 research outputs found

    Implementation of Adaptive Neural Networks Controller for NXT SCARA Robot System

    Get PDF
    Several neural network controllers for robotic manipulators have been developed during the last decades due to their capability to learn the dynamic properties and the improvements in the global stability of the system. In this paper, an adaptive neural controller has been designed with self learning to resolve the problems caused by using a classical controller. A comparison between the improved unsupervised adaptive neural network controller and the P controller for the NXT SCARA robot system is done, and the result shows the improvement of the self learning controller to track the determined trajectory of robotic automated controllers with uncertainties. Implementation and practical results were designed to guarantee online real-time

    Structural analysis of ferromagnetic Mn-doped ZnO thin films deposited by radio frequency magnetron sputtering

    Get PDF
    We report on the structural analysis of ferromagnetic Mn-doped ZnO thin films deposited by radio frequency magnetron sputtering, using transmission electron microscopy (TEM), high-resolution x-ray diffraction, and Rutherford backscattering spectroscopy (RBS) measurements. The ferromagnetic Mn-doped ZnO film showed magnetization hysteresis at 5 and 300 K. A TEM analysis revealed that the Mn-doped ZnO included a high density of round-shaped cubic and elongated hexagonal MnZn oxide precipitates. The incorporation of Mn caused a large amount of structural disorder in the crystalline columnar ZnO lattice, although the wurtzite crystal structure was maintained. The observed ferromagnetism is discussed based on the structural characteristics indicated by TEM and the behavior of Mn when it is substituted into a ZnO lattice derived from RBS measurements

    QED radiative corrections to the decay pi^0 to e^+e^-

    Full text link
    We reconsider QED radiative corrections (RC) to the π0e+e\pi^{0}\to e^{+}e^{-} decay width. One kind of RC investigated earlier has a renormalization group origin and can be associated with the final state interaction of electron and positron. It determines the distribution of lepton pair invariant masses in the whole kinematic region. The other type of RC has a double-logarithmic character and is related to almost on-mass-shell behavior of the lepton form factors. The total effect of RC for the π0e+e\pi^{0}\to e^{+}e^{-} decay is estimated to be 3.2% and for the decay ηe+e\eta \to e^{+}e^{-} is 4.3%.Comment: 12 pages, 3 figure

    The Ratio of W + N jets To Z/gamma + N jets As a Precision Test of the Standard Model

    Full text link
    We suggest replacing measurements of the individual cross-sections for the production of W + N jets and Z/gamma + N jets in searches for new high-energy phenomena at hadron colliders by the precision measurement of the ratios (W+0 jet)/(Z+0 jet), (W+1 jet)/(Z+1 jet), (W+2 jets)/(Z+2 jets),... (W+N jets)/(Z+N jets), with N as large as 6 (the number of jets in ttbarH). These ratios can also be formed for the case where one or more of the jets is tagged as a b or c quark. Existing measurements of the individual cross sections for Wenu + N jets at the Tevatron have systematic uncertainties that grow rapidly with N, being dominated by uncertainties in the identification of jets and the jet energy scale. These systematics, and also those associated with the luminosity, parton distribution functions (PDF's), detector acceptance and efficiencies, and systematics of jet finding and b-tagging, are expected to substantially cancel in calculating the ratio of W to Z production in each N-jet channel, allowing a greater sensitivity to new contributions in these channels in Run II at the Tevatron and at the LHC.Comment: 10 pages, 8 figures, added reference

    Dark Force Detection in Low Energy e-p Collisions

    Get PDF
    We study the prospects for detecting a light boson X with mass m_X < 100 MeV at a low energy electron-proton collider. We focus on the case where X dominantly decays to e+ e- as motivated by recent "dark force" models. In order to evade direct and indirect constraints, X must have small couplings to the standard model (alpha_X 10 MeV). By comparing the signal and background cross sections for the e- p e+ e- final state, we conclude that dark force detection requires an integrated luminosity of around 1 inverse attobarn, achievable with a forthcoming JLab proposal.Comment: 38 pages, 19 figures; v2, references adde

    Heisenberg's Uncertainty Relation and Bell Inequalities in High Energy Physics

    Full text link
    An effective formalism is developed to handle decaying two-state systems. Herewith, observables of such systems can be described by a single operator in the Heisenberg picture. This allows for using the usual framework in quantum information theory and, hence, to enlighten the quantum feature of such systems compared to non-decaying systems. We apply it to systems in high energy physics, i.e. to oscillating meson-antimeson systems. In particular, we discuss the entropic Heisenberg uncertainty relation for observables measured at different times at accelerator facilities including the effect of CP violation, i.e. the imbalance of matter and antimatter. An operator-form of Bell inequalities for systems in high energy physics is presented, i.e. a Bell-witness operator, which allows for simple analysis of unstable systems.Comment: 17 page

    Determination of the Parity of the Neutral Pion via the Four-Electron Decay

    Full text link
    We present a new determination of the parity of the neutral pion via the double Dalitz decay pi^0 -> e+ e- e+ e-. Our sample, which consists of 30511 candidate decays, was collected from K_L -> pi0 pi0 pi0 decays in flight at the KTeV-E799 experiment at Fermi National Accelerator Laboratory. We confirm the negative pi^0 parity, and place a limit on scalar contributions to the pi^0 -> e+ e- e+ e- decay amplitude of less than 3.3% assuming CPT conservation. The pi^0 gamma* gamma* form factor is well described by a momentum-dependent model with a slope parameter fit to the final state phase space distribution. Additionally, we have measured the branching ratio of this mode to be B(pi^0 -> e+ e- e+ e-) = (3.26 +- 0.18) x 10^(-5).Comment: 5 pages, 4 figures. Typographical error in radiative branching ratio (Eq. 6) correcte

    Helicity Analysis of Semileptonic Hyperon Decays Including Lepton Mass Effects

    Full text link
    Using the helicity method we derive complete formulas for the joint angular decay distributions occurring in semileptonic hyperon decays including lepton mass and polarization effects. Compared to the traditional covariant calculation the helicity method allows one to organize the calculation of the angular decay distributions in a very compact and efficient way. In the helicity method the angular analysis is of cascade type, i.e. each decay in the decay chain is analyzed in the respective rest system of that particle. Such an approach is ideally suited as input for a Monte Carlo event generation program. As a specific example we take the decay Ξ0Σ++l+νˉl\Xi^0 \to \Sigma^+ + l^- + \bar{\nu}_l (l=e,μl^-=e^-, \mu^-) followed by the nonleptonic decay Σ+p+π0\Sigma^+ \to p + \pi^0 for which we show a few examples of decay distributions which are generated from a Monte Carlo program based on the formulas presented in this paper. All the results of this paper are also applicable to the semileptonic and nonleptonic decays of ground state charm and bottom baryons, and to the decays of the top quark.Comment: Published version. 40 pages, 11 figures included in the text. Typos corrected, comments added, references added and update

    An Electron Fixed Target Experiment to Search for a New Vector Boson A' Decaying to e+e-

    Full text link
    We describe an experiment to search for a new vector boson A' with weak coupling alpha' > 6 x 10^{-8} alpha to electrons (alpha=e^2/4pi) in the mass range 65 MeV < m_A' < 550 MeV. New vector bosons with such small couplings arise naturally from a small kinetic mixing of the "dark photon" A' with the photon -- one of the very few ways in which new forces can couple to the Standard Model -- and have received considerable attention as an explanation of various dark matter related anomalies. A' bosons are produced by radiation off an electron beam, and could appear as narrow resonances with small production cross-section in the trident e+e- spectrum. We summarize the experimental approach described in a proposal submitted to Jefferson Laboratory's PAC35, PR-10-009. This experiment, the A' Experiment (APEX), uses the electron beam of the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory (CEBAF) at energies of ~1-4 GeV incident on 0.5-10% radiation length Tungsten wire mesh targets, and measures the resulting e+e- pairs to search for the A' using the High Resolution Spectrometer and the septum magnet in Hall A. With a ~1 month run, APEX will achieve very good sensitivity because the statistics of e+e- pairs will be ~10,000 times larger in the explored mass range than any previous search for the A' boson. These statistics and the excellent mass resolution of the spectrometers allow sensitivity to alpha'/alpha one to three orders of magnitude below current limits, in a region of parameter space of great theoretical and phenomenological interest. Similar experiments could also be performed at other facilities, such as the Mainz Microtron.Comment: 19 pages, 12 figures, 2 table
    corecore